- Solve your problems in an easy way.
- Work on math, scientific and technical problems.
- No setup and no configuration - it is always up-to-date.
- Cheaper than comparable solutions.

- A chemist solves differential equations.
- A chip designer evaluates bit vector expressions.
- A civil engineer calculates static load for constructions.
- A teacher plots graphs for student assignments.

3+4*315 - 5! ;

2/3 + 1/2

solve( x^2 - 5*x + 6 == 0, x ) ;

solvef( x^2 - 8*x + 12 , x == [0..5] )

plot( fun , x^3 -7*x +2 , x == [-2 .. 5] ) ;

f(x) := 2^x ; plot( fun , f(x) , x == [1 .. 4] )

dataset := {1,2,3,4,5,6,7,8,9,10,11,12} ;

{min, q1, av, q2, max} := quartiles(dataset);

plot( bar , {34,56,12,27,45} ) ;

plot( pie , {34,56,12,27,45} )

solvei(

{ x+y < 3, y+z > 2} ,

{ x == [0..5] , y == [0..10] , z == [2..7] } ,

2*x + 3*z )

x := {20,22,26,27,28,29,31}` :
y := {16,20,18,28,21,20,26}` :

for ii := 1 to nrows(x) do

M[ii,...] := map( x[ii,...] , { 1 , q , q^2 } , q ): next;

{ coeff , H } := solvem( M , y ) : { a , b , c } := coeff`

S := 0 ;

proc myproc(k,n) := global

S := S + if (k <> 3) then k^n else 1 end ;

for ii := 1 to 9 step 2 do ii ; do myproc(ii,3) next

k := (1/4) * 5! ;

f(x) := log(x) + 25

dataset := {4,2,6,3,5,3,1,8} ;

S := sum(dataset) ;

(2 < S) and (S < 39) and not (S == 14)